數(shù)學(xué)作為考研中能夠拉開大分差的科目,有多少考研er是因?yàn)閿?shù)學(xué)與自己心儀的院校失之交臂?建議考研數(shù)學(xué)基礎(chǔ)不好的小伙伴早點(diǎn)開始復(fù)習(xí),下面小編整理了2022考研數(shù)學(xué)復(fù)習(xí):易錯(cuò)知識點(diǎn)整理,一起來看看吧。
一、幾個(gè)易混淆的考研數(shù)學(xué)概念
連續(xù),可導(dǎo),存在原函數(shù),可積,可微,偏導(dǎo)數(shù)存在他們之間的關(guān)系是怎么樣的?存在極限,導(dǎo)函數(shù)連續(xù),左連續(xù),右連續(xù),左極限,右極限,左導(dǎo)數(shù),右導(dǎo)數(shù),導(dǎo)函數(shù)的左極限,導(dǎo)函數(shù)的右極限。
二、羅爾定理
設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù)(其中a不等于b),在開區(qū)間(a,b)上可導(dǎo),且f(a)=f(b),那么至少存在一點(diǎn)ξ∈(a、b),使得f‘(ξ)=0。羅爾定理是以法國數(shù)學(xué)家羅爾的名字命名的。羅爾定理的三個(gè)已知條件的意義,①f(x)在[a,b]上連續(xù)表明曲線連通端點(diǎn)在內(nèi)是無縫隙的曲線;②f(x)在內(nèi)(a,b)可導(dǎo)表明曲線y=f(x)在每一點(diǎn)處有切線存在;③f(a)=f(b)表明曲線的割線(直線AB)平行于x軸;羅爾定理的結(jié)論的直幾何意義是:在(a,b)內(nèi)至少能找到一點(diǎn)ξ,使f’(ξ)=0,表明曲線上至少有一點(diǎn)的切線斜率為0,從而切線平行于割線AB,與x軸平行。
三、泰勒公式展開的應(yīng)用專題
相信很多同學(xué)看到泰勒公式就哆嗦,因?yàn)檎б豢春荛L很恐怖,瞬間大腦空白,身體失重的感覺。其實(shí)在搞明白以下幾點(diǎn)后,這樣的癥狀就能夠消失了。1.什么情況下要進(jìn)行泰勒展開;2.以哪一點(diǎn)為中心進(jìn)行展開;3.把誰展開;4.展開到幾階?
四、應(yīng)用多次中值定理的專題:
大部分的考研數(shù)學(xué)題,一般要考察你應(yīng)用多次中值定理,較重要的就是要培養(yǎng)自己對這種題目的敏感度,要很快反映老師出這題考哪幾個(gè)中值定理,敏感性是靠自己多練習(xí)綜合題培養(yǎng)出來的。比如經(jīng)常去復(fù)習(xí),那樣對中值定理的題目早已沒有那種剛學(xué)高數(shù)時(shí)的害怕之極。
五、對稱性,輪換性,奇偶性在積分(重積分,線,面積分)中的綜合應(yīng)用:
這類考研數(shù)學(xué)題型幾乎每年,要么小題中考,要么大題中要用,這是必須掌握的知識,但是往往不是那么容易就靠做3,4個(gè)題目就能了解這知識點(diǎn)的應(yīng)用到底有多廣泛。我們做積分題,尤其多重積分和線面積分,死算也許能算出結(jié)果,但是要是能用以上性質(zhì),那可真是三下五除二,這方面的感覺相信大家有過,可是或許僅僅是曇花一現(xiàn),因?yàn)槟阕龀鰜砹艘詾橐院缶鸵欢〞?huì)在相似的題目中用,其實(shí)不然,因?yàn)閮H僅靠幾道題目很大程度上不能給你留下太深刻的印象,下次輪到的時(shí)候或許就是了,你可能頓時(shí)苦思冥想,較終還是選擇了較傻的辦法,浪費(fèi)了寶貴時(shí)間。說這些其實(shí)就是說明,的正?;虺0l(fā)揮是建立在平時(shí)踏實(shí)做,見識廣,嚴(yán)要求的基礎(chǔ)上。
微信選課
享更多優(yōu)質(zhì)好課!